Translating Subgraphs to Nodes Makes Simple GNNs Strong and Efficient for Subgraph Representation Learning
Dongkwan Kim and Alice Oh. International Conference on Machine Learning (ICML), 2024
Subgraph representation learning has emerged as an important problem, but it is by default approached with specialized graph neural networks on a large global graph. These models demand extensive memory and computational resources but challenge modeling hierarchical structures of subgraphs. In this paper, we propose Subgraph-To-Node (S2N) translation, a novel formulation for learning representations of subgraphs. Specifically, given a set of subgraphs in the global graph, we construct a new graph by coarsely transforming subgraphs into nodes. Demonstrating both theoretical and empirical evidence, S2N not only significantly reduces memory and computational costs compared to state-of-the-art models but also outperforms them by capturing both local and global structures of the subgraph. By leveraging graph coarsening methods, our method outperforms baselines even in a data-scarce setting with insufficient subgraphs. Our experiments on eight benchmarks demonstrate that fined-tuned models with S2N translation can process 183 – 711 times more subgraph samples than state-of-the-art models at a better or similar performance level.
Leave a Comment